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Optimal Execution Under Nonlinear Transient Market Impact Model

by Weiguan Wang

We study the optimal strategy to execute a large order in the context that the mar-

ket impact has a nonlinear transient form. We first review two classic temporary-

permanent models. Then we formulate the constrained optimisation problem un-

der the transient model following the paper [11] and discuss the regularity and

irregularity of a general market impact model. As we are investigating a nonlinear

transient impact model, we resort to sequential quadratic programming (SQP), a

numerical optimisation of cost functional. We verify the conclusion of [11] that

in the strongly concave instantaneous impact case, the optimal strategy is char-

acterised as several single-term large purchases separated by long-lived yet weak

sales in a buy program. This indicates the existence of transaction-triggered price

manipulation, and it deteriorates as nonlinearity increases. We innovatively illus-

trate the trend of optimal strategy as the degree of non-linearity changes. We also

investigate the effect of discretisation from a new aspect and find that a higher

frequency of trading enables a trader to better exploit the benefit of price manip-

ulation and this benefit is more significant in strongly concave case.
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Chapter 1

Introduction

The financial markets have seen the rapid evolution of algorithmic trading. Traders

use computer programs to implement various strategies This allows traders and

financial institutions to react to changes in market conditions more rapidly and

efficiently. In Additional, in financial markets like the US, financial institutions

usually play a more important role than individual investors because the institu-

tional investors, such as pension funds and hedge funds, have larger total assets

and more advanced strategies. As a result, we have witnessed a substantial in-

crease in the growth of equity trading over the past several decades.

A large financial institution usually has significant ability to affect the market

condition, because its trading is normally of higher frequency and larger volume.

Thus the trader should carefully choose a proper strategy to execute the order, in

terms of the time, velocity and venue, i.e. exchange or dark pool.

Trading cost, often called execution cost because it appears during the execu-

tion of trading strategy, consists of bid-ask spread, commission and price impact;

these aspects affect the investment performance to a large extent. According to

Perold, Andre, and William (1988) [29], in their investigation of a representative

fund, they observed that the fund would outperform the market by 20% if it were

executed by ‘paper’ transaction. ‘Paper’ means that your order can always be

fulfilled at any quantity and free of commissions, without affecting the market

condition. However, the actual performance of that fund only outperformed the

market average by 2%, which is the result of execution cost. This fact implies that

the execution cost is unexpectedly large, and strategies that could optimize the

1



Chapter 1. Introduction 2

cost should be developed, especially for large financial institutions whose trading

accounts for a significant proportion of daily volume.

From the literature, there are two major classes of market impact model. The

first one separates the price impact into two components: temporary impact,

which only affects the trading that triggered it; and permanent impact, which

affects the future price dynamics and trading afterwards. The Bertsimas and Lo

model (1998) [6] and Almgren and Chriss model (1999) [4] belong to this class.

However, empirical data shows that the price impact of executing an order decays

with time, as seen in Moro, Esteban and Vicente (2009) [26]. This means the

market impact model should have a transient form. This class of impact model

has two components: an instantaneous impact function and a decay kernel.

From empirical study, the instantaneous impact function in a transient model is

strongly concave, while the decay kernel is asymptotically a power law function.

The goal of liquidating a large position in a finite time horizon imposes a con-

straint on the optimization problem. Due to the nonlinearity of cost functional,

finding the solution to this constrained optimization problem is challenging. For

a practical trading strategy, a solution to the discretized version of the problem is

to be found. Usually numerical optimization techniques are required to deal with

this kind of problem. One numerical algorithm that is suitable for solving this

non-linear constrained optimization problem is Sequential Quadratic Program-

ming. This state-of-the-art optimisation technique, in terms of speed, accuracy

and percentage of successful convergence, is based on derivative of Lagrangian

function and constraint. It tackles the optimization problem by constructing a

quadratic sub-problem and converging to the local minimum iteratively. By the

local sequential quadratic programming, the convergence to a local minimum is

guaranteed. In order to search the global minimum within the feasible region, we

implement the Multistart scheme. This scheme runs the local sequential quadratic

programming from each start point and then obtains multiple local minima. The

one with the lowest objective value among the local minima is regarded as the

global minimum.

We obtain the optimal liquidating strategy under different market conditions and

discretizations by using the Multistart SQP. We examine the optimal strategies

in cases where the instantaneous impact function is linear, slightly concave and

strongly concave, respectively. In each case, we then characterize the behaviour of
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optimal strategies. One feature we should pay attention to particularly is the exis-

tence of price manipulation. The weak form of price manipulation is transaction-

triggered price manipulation, which can reduce execution cost by intermediate

selling (buying) during a buy (sell) order. Price manipulation is disallowed and

the existence of price manipulation in an optimal strategy implies that the model

needs to be further investigated and our method calls for improvement.

This dissertation is organized as follows. In Chapter 2, we review two classes

of market impact model by illustrating their representative models in detail. In

Chapter 3, we explain how to formulate this constrained optimization problem

under the transient impact model and discuss the regularity and irregularity of

the transient model. We also illustrate the functional form of each component

and present the discretized expression of the problem. In Chapter 4, we explain

the local sequential quadratic programming algorithm and Multistart with parallel

computing scheme used to obtain the optimal trading strategy. In Chapter 5, we

present the numerical results given by SQP and characterize the optimal strategy

to discuss the existence of price manipulation. In Chapter 6, we summarize the

findings, mention the weakness of our method, and possible future improvement.



Chapter 2

Market impact model

The relation between order flow and price changes has attracted considerable at-

tention in recent years(see Hasbrouck 2007 [16]; Bouchaud et al., 2004 [7]). This

is partly due to the increasing tendency towards a full automation of exchanges

and the discovery of new statistical regularities of the microstructure of financial

markets.

2.1 Market price impact

Market price impact refers to the fact the execution of a large order will influence

the prevailing market price. From market observation, usually the asset price will

tend to increase if a large buy order is posed, and a large sell order will probably

decrease the asset price. This impact is usually adverse to the market participant,

creating additional cost for executing the order. Studies (e.g. see Brinson, Hood

and Beebower (1986) [8]) have shown that portfolio managers are unable to match

the performance of various passive benchmarks and under-perform by about one

or two percent. The researches on the market price impact have shown that the

price impact of block trades is not trivial and to some extent explains the poor

performance of portfolio managers. However in some cases, the participant can

make use of this impact. For instance, the central bank can sell the government

bond to increase the corresponding interest rate.

4
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The market price impact of a large trade is more pronounced in an asset market

without high liquidity. In this kind of market, there is insufficient liquidity to per-

mit the immediate execution of a large order without eating into the limit order

book. Thus in most cases, it is not optimal to immediately execute the whole

order in this kind of market.

The particular importance of the market price impact can be seen from the famous

event ”Flash Crash” of May 6, 2010. According to CFTC-SEC (2010), an impor-

tant contribution to the occurrence of this event is the rapid execution of a large

E-Mini contract in just 20 minutes. By CFTC-SEC (2010) [9] : On May 6, 2010,

the prices of many U.S.-based equity products experienced an extraordinary rapid

decline and recovery.[...] At 2:32 p.m., a large fundamental trader initiated a sell

program to sell a total of 75,000 E-Mini contracts. On normal occasion when this

trader initiated the sell order of similar size, the automated execution algorithms

took into account price, time and volume, and it took more than 5 hours for the

order to be executed. However, on May 6, when the market was already under

stress, the sell algorithm chosen by the large trader only target trading volume,

without considering price or time, executed the sell program extremely rapidly in

just 20 minutes.

2.2 Optimal execution strategy

In the presence of market price impact, we need to find an optimal execution

strategy in order to minimize the adverse price impact due to our trading. If we

execute the whole order immediately, we are incurred with huge execution cost

but we do not need to bear any future price uncertainty. In another case in which

we execute the order gradually, we are likely to incur smaller execute cost but with

higher future price uncertainty. Thus according to Macey and O’hara (1996) [25],

there is no clear definition of best execution. The position of a typical financial

institution is usually relatively large, so their trading will influence the market. As

a result, they almost always choose to divide the whole order into smaller parts,

trading gradually, to mitigate the market perturbation caused by their trading.

For this reason, optimal execution is not a single amount to trade. It should be

a strategy, i.e. a sequence of orders that execute the whole position during the

horizon and are subject to the change of market conditions.
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In order to find the best execution strategy, one starts with setting up a model

that both describes the evolution of the asset price and how trades affect the

asset price dynamics. Then we need to specify a criteria to judge what strategy is

better than the others. In addition, one needs to choose a certain criteria in order

to characterize the preference of an investor. In this sense, the optimal strategy

is the minimizer of the criteria among all feasible trading strategies under certain

constraints.

There are various kinds of risk criteria, which we summarize as follows and is based

on Gatheral and Schied (2013) [14]:

• Mean-variance optimization. This risk criteria is similar to the mean-

variance optimization in portfolio choice problem. It aims to minimize the

functional of the form

E[RT (X )] + λvar(RT (X )),

where RT donotes the revenue of an order execution strategy, the var(Y )

denotes the variance with respect to measure P of a random variable Y , and

λ ≥ 0 is a risk aversion parameter. This problem is investigated by Almgren

and Chriss(1999)[3, 4]. And in Lorenz & Almgren (2011) [24], in contrast to

standard formulation in which the mean-variance optimal strategy are static,

they show that substantial improvement is possible by using dynamic trading

strategies and that the improvement is larger for large initial positions. In

Konishi and Makimoto (2001) [21], they define the measure of opportunity

cost as the standard deviation of the asset price movement and minimize the

transaction cost, the sum of the execution cost and the opportunity cost.

• Expected cost minimization corresponds to the minimization of the functional

of the form

E

[
T∑
t=1

PtSt

]
where Pt is the price of the asset at time t, which follows a specified distri-

bution under trading impact, and St is the amount of asset to be executed

during the tth trading interval. In Bertsimas and Lo (1998) [6], they show

that given a fixed block S̄ of shares to be executed within a finite number

of periods T and an impact function that captures the impact of trading on

asset price dynamics under different market condition, an optimal sequence
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of trades exists, which minimizes the expected cost of executing S̄ within T

periods.

• Expected-utility maximization corresponds to the maximisation of the func-

tional form

E [u(RT (X))] ,

where u : R 7−→ R is a utility function, which by definition is concave and

non-decreasing. The advantage of this kind of functional is the time consis-

tency, in contrast to the mean-variance functional. In Schied and Schöneborn

[31], they want to find the optimal strategy that maximize the utility of liq-

uidating a block of stock. They address this question in the continuous-time

liquidity model introduced by Almgren [5] where the impact cost is linear

and time horizon is finite.

2.3 Temporary and permanent price impact

One class of the market impact models that have been proposed so far assumes

that the price impact consists of two components. The first component is the

temporary impact. This kind of impact only affects the individual trade that

has triggered it. By Almgren and Chriss [4], the economic intuition behind the

temporary effect is that a trader plan to buy nk units of asset during the interval

tk−1 and tk. The trader chooses to divide the large order into smaller ones in order

to better exploit liquidity. As the trader is buying asset, the price of the asset

increases gradually, because the buy orders exhaust the liquidity at current level

of price thus have to trade at more adverse level. They assume that this change

of price is temporary and the liquidity will restore and a new equilibrium will

appear. The second component of this class of model is the permanent impact,

which affects all the trades after the one triggered it.

2.3.1 The Bertsimas and Lo model

In Bertsimas and Lo model [6], they consider a problem as follows: an investor

seeking to acquire a large position of S̄ shares of stock in a finite horizon [0, T ].

Since the demand curve for even the most liquidate asset is not perfectly elastic,

the trader will divide the order into smaller packages distributed over the course
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of the finite time. Presumably, the way in which it is optimal to trade depends

on the way in which the asset price evolves and how the trade affects the price

dynamics, i.e. price impact.

With little loss of generality, time is measured in number of units. The unitary

length can be arbitrarily long that is practically sensible. For instance, if the whole

order has to be executed with in one day from market open at 9:30 a.m. to 4:00

p.m., setting the length of a period to be 15 minutes yields T = 26. In other cases,

the combination of T and length of period can be adjusted accordingly.

In the following, denote by St the number of shares to be executed in period t,

where t = 1, ..., T and by Pt the corresponding execution price. In the model,

Bertimas and Lo minimize the expected execution cost under the liquidation con-

straint, which can be expressed as follows:

min
St

E

[
T∑
t=1

PtSt

]
,

subject to the constraint
T∑
t=1

St = S̄.

In Bertsimas and Lo model [6], they investigate many kinds of price dynamics

for the asset Pt. In the literature, the law of motion can be decomposed into two

parts: the dynamics of price without the trading impact and the impact of trading

St units on the execution price Pt. In the very basic model, the dynamics of Pt in

the absence of trading impact follows an arithmetic random walk, which can be

expressed as

Pt = Pt−1 + εt,E [εt | St, Pt−1] = 0.

In the simplest setting, the impact due to trade is a linear function of trade size,

with an amplifying parameter θ, so that the impact is added to the non-impact

price Pt−1, generating the effective price for trading St. Then the price dynamics

of Pt can be written as:

Pt = Pt−1 + θSt + εt, θ > 0,E [εt | St, Pt−1] = 0,

where εt are identically and independently distributed normal random variable.
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There are a few implausible empirical implication of this kind of specification:

independent increment, permanent price impact, linear impact and positive prob-

ability of negative price. However it still motivates us of a more complicated and

realistic models.

Based on all these assumptions, the solution to this problem can be obtained by

stochastic dynamic programming. Bertimas and Lo find that the optimal execu-

tion, i.e. the solution to the optimization problem is

S∗1 = S∗2 = ... = S∗T = S̄/T,

which means the best execution strategy is simply trading evenly over the course

of the finite horizon.

This surprisingly simple strategy as the best execution is because the price impact

does not depend either on the current price Pt−1 or the remaining order to be

executed. Thus the package executed in each period should be independent and

same.

Then Bertimas and Lo make an improvement to the very basic model. They

add another component Xt which is serially-correlated to reflect the correlation

between serial prevailing prices Pt and affect the execution price linearly. Thus,

keeping the impact function linear in St,

Pt = Pt−1 + θSt + γXt + εt, θ > 0

Xt = ρXt−1 + ηt, η ∈ (−1, 1)

where εt and ηt are independent white noise processes with mean 0 and variance

σ2
ε and σ2

η, respectively.

Bertimas and Lo argue that the presence of Xt in the price dynamics captures

one of the two kinds of information, one of which is the changing market condition

and the other of which is private information about the security. For the first

kind, Xt may be the return on market index or a common factor of most assets

being considered. Here, ρ measures the sensitivity of the particular asset to that

factor. In the other case where Xt represent the private information, this indicates

that the trader can have an individual judgement on the future evolution of the
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asset price and thus makes use of this judgement to construct the optimal strat-

egy. Again by dynamic programming, Bertimas and Lo obtain a solution of the

following form

S∗T−i = σw,iWT−i + σx,iXT−i, (2.1)

for i = 0, 1, ..., T − 1 where

σw,i =
1

i+ 1
, σx,i =

ρbi−1
2ai−1

and

ai =
θ

2

(
1 +

1

i+ 1

)
, a0 = θ,

bi = γ +
θρbi−1
2ai−1

, b0 = γ,

ci = ρ2ci−1 −
ρ2b2i−1
4ai−1

, c0 = 0,

di = di−1 + ci−1σ
2
η, d0 = 0.

From solution (2.1), we can see that the strategy consists of two parts, the first

part is dividing the remaining position evenly and the second part can be seen as

an adjustment due to the existence of the serially-correlated information. Thus if

the correlation coefficient ρ0 = 0, this execution strategy will reduce to the naive

strategy, as the information Xt is totally unpredictable.

This linear impact model with information has several defects. For example, the

impact is still permanent, which contradicts some empirical evidence that shows

the impact should be separated into permanent and temporary components (see

Chan and Lakonishok [10]). Moreover, the percentage change decreases as the

asset price increases in this model, which also contradicts empirical data (see

Loeb (1983) [23]). In order to improve this model, they proposed linear-percentage

temporary impact model.

Let the price at time t Pt be the sum of two parts, the no-impact price P̃t and

the transaction-triggered impact ∆t. For the no-impact price P̃t, a plausible and
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observable proxy is the mid-point of the bid-ask price. Also, to ensure the non-

negativity of asset price, they assume a geometric Brownian motion for the no-

impact price P̃t, which is expressed below,

P̃t = P̃t−1exp(Zt)

where Zt here is IID normal random variable, i.e. Zt ∼ N(µt, σ
2
t ). For the price im-

pact part, they assume that the percentage of the price impact to no-impact price

P̃t is a linear function of transaction size St and serially-correlated information

indicator Xt. It can be expressed as follows:

∆t = (θSt + γXt) P̃t

Xt = ρXt−1 + ηt

where ηt is the white noise process that each has mean 0 and variance σ2
η. As

above, variable Xt is an indicator of private information or market condition, and

it is set to be an AR(1) process to incorporate predictability. The parameter ρ

and θ represent the sensitivity of impact ∆t to information Xt and trade size St,

respectively.

The LPT specification has several advantages over the linear impact model. First,

under some restrictions on impact ∆t, the non-negativity of asset price Pt is guar-

anteed. Second, the percentage price impact increases linearly with the trade size.

Third, by decomposing the asset price into no-impact price and price impact, the

price impact becomes temporary, which mean it does not affect future prices.

In Bertimas and Lo 1998 [6], they give a close-form solution for the LPT specifi-

cation, in which the optimal execution strategy is a combination of linear function

of the state variable XT−k, the information indicator, and WT−k, the order to be

executed.

2.3.2 The Almgren and Chriss model

The model proposed in Almgren and Chriss (1999) [4] considers the aim of mini-

mization the combination of uncertainty and transaction cost arising from tempo-

rary and permanent impact. Taking the volatility as a penalty for late execution

of the order, they construct an efficient frontier for a simple linear cost model in



Chapter 2. Market Impact Model 12

the class of time-dependent liquidation strategy, which is in a similar way to the

portfolio choice problem.

In contrast to Bertimas and Lo (1998) [6] where they define the optimal execution

as the strategy which minimize the expected execution cost, Almgren and Chriss

works in a more general framework. They aim to maximize the utility of trading

revenue. They define utility as a linear combination of expected execution cost

and variance of trading. Adding the variance of execution cost into the determi-

nation of optimal strategy has an economic justification. Suppose, the trader can

either choose to execute the whole order immediately or to execute gradually over

the horizon. Especially in trading illiquid and volatile asset, immediate trading

has very high execution but with no future uncertainty. Trading gradually will

probably has smaller expected cost, but the trader has to bear the risk of future

price fluctuation.

How to penalize for deferring the trading is a rather subjective issue and it should

depend on how risk-averse that investor is. For example, if we are considering an

investor with high risk tolerance and long trading horizon like a mutual fund, the

penalty can be set to a small constant times variance of cost. For investor who is

highly risk-averse, the penalty is set to be a large constant times variance of cost.

Consider a trading strategy for liquidating a single security. Suppose we have to

liquidate a block of X units of a security before time T . The trading is to be

executed in N equal length time intervals, i.e. τ = T/N . Then discrete times

ti = iτ , where i = 0, 1, ..., N − 1, N . A trading trajectory is defined as a sequence

x0, x1, ..., xN , where xi is the number of asset held at time ti. Liquidation condition

requires x0 = X and xN = 0.

They define a new variable by the equation ni = xi−1−xi. Then ni is the units of

asset sold in interval [ti−1, ti), and we have the following relation between xi and

ni:

xi = X −
i∑

j=1

nj =
N∑

j=i+1

nj, i = 0, 1, ..., N.

This can be extended to more general framework where there is simultaneous buy-

ing and selling several securities. They distinguish two kinds of trading strategy,

static and dynamic. Static strategy is determined prior to trading, using the in-

formation available at t0, while dynamic strategy depends on the information up

to and including time tk−1.
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Suppose that the initial price of the security is P0, then the initial value of the

position is XP0. In this model, the evolution of price of the security depends on

two exogenous factors and one endogenous factor. The word ’exogenous’ means

that it is independent of our trading and is determined by the demand and supply

of the security in the market. They are assumed to be drift and volatility. The

endogenous factor is the impact triggered by the trading, which is called market

impact. As in Bertimas and Lo [6], it distinguishes between temporary impact,

which only influence the trade that triggered it, and permanent impact, which

affects all the remaining trades equally and will give rise to a new equilibrium

price.

Again they assume discrete arithmetic random walk in order to remain the tractabil-

ity:

Pi = Pi−1 + στ 1/2ξi − τg(
ni
τ

),

for i = 0, 1, ..., N . Here σ refers to volatility, ξi is a normally distributed random

variable with mean 0 and unit variance. g(· ) is a function of average trading rate

during time interval from ti−1 to ti, and it is actually a measure of permanent

impact due to our trading. Note that there is no drift term in the expression,

meaning that we have no information regarding the evolution of the price.

To model temporary price impact due to trading, they introduce a linear function

of average trading rate, g(ni/τ), describing the temporary price drop (or increase)

per share due to trading at average rate ni/τ in [ti−1, ti). Hence the effective price

for the order during this interval is

P̃i = Pi−1 − h(
ni
τ

).

We can see that h(· ) does not appear in the expression for Pi, which implies

temporary impact does not affect the next equilibrium price Pi.

Then they define the capture of a trajectory as the total revenue obtained from

executing the whole position. This is the sum of each trade size times the corre-

sponding execution price, and they arrive at

N∑
i=0

niP̃i = XP0 +
N∑
i=1

(
στ 1/2ξi − τg(

ni
τ

)
)
xi −

N∑
i=1

nih(
ni
τ

). (2.2)
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The permanent impact function g(· ) and temporary h(· ) in equation (2.2) can be

chosen to reflect suitable market microstructure. We can see from the expression

that the first term is the initial book value of position and the following three

terms are caused by three factors. The term
∑
τg(ni/τ)xi is the loss caused

by the permanent impact. The term
∑
στ 2ξixi is the total impact of volatility.

And the term nih(ni/τ) is the temporary price decrease due to selling at average

rate ni/τ , which only affects the portion that has triggered it.Then they define

implementation shortfall as the difference between XP0 −
∑
niP̃i, which is the

same as Perold (1998) [29].

If the variance of trading cost is taken into account, a rational trader will always

seek to minimize the expectation of shortfall for a given level of variance of short-

fall. Almgren and Chriss (2001) [4] define a trading strategy to be optimal or

efficient if there is not a strategy which has lower expected shortfall for the same

or lower variance. Thus expressed mathematically, we may construct the efficent

frontier by solving the constrained optimization problem as follows

min
x:V (x)6V∗

E(x)

for a maximal variance V∗. Since this is a convex optimization problem where

the constraint {V (x) 6 V∗} and objective function E(x) are both convex, there

must be a local minimizer x∗(V∗) which is also global minimizer. Thus the optimal

strategies has a single parameter V∗, maximal variance. This family is called the

efficient frontier of optimal trading strategy.

To solve this constrained optimization problem, they introduce a Lagrange mul-

tiplier λ to change the constrained problem to an unconstrained on by penalty

function. Then the problem becomes

min
x

(E(x) + λV (x)) .

If λ > 0, this will ensure a unique optimal solution as the objective function E+λV

is strictly convex.

In the paper, the temporary impact function is set to

h(
ni
τ

) = εsgn(ni) +
η

τ
ni,
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and the permanent impact function is set to be

g(v) = γv

Then the necessary condition for the minimizer of objective function E(x)+λV (x)

is that the gradient is zero. Thus they obtain a linear difference equation,

1

τ 2
(xj−1 − 2xj + xj+1) = κ̃2xj

κ̃2 =
λσ2

η̃
=

λσ2

η(1− λ
2η

)

They obtain a specific solution with constraint x0 = X and xN = 0, which is

xj =
sinh(κ(T − tj))

sinh(κT )
X, j = 0, .., N.

The solution above is static optimal solution for a given level of variance of cost.

This static strategy ignores the arrival of news. So they continue to investigate

how close these static strategy is to being globally optimal. And they investigate

three types of information. The first is serial correlation. They proved that the

improvement of incorporating serial correlated information into price dynamics is

small. More importantly, the improvement does not depend on portfolio size. The

second kind of information is scheduled news. They proved that the anticipated

news can temporarily shift the parameters of the dynamics of the asset price

significantly. And the global strategy turns out to be piecewise static. It means

we can obtain the optimal strategy at time t0, having the same trajectory up

to the scheduled release time of the news, and according to the outcome of this

anticipated news, we decide at that time which stategy we should take. The third

kind of information is unanticipated news. According to Almgren and Chriss

[4], if one makes the simplifying assumption that the new information is either

scheduled or anticipated, the optimal strategy is always same as static trading

before the arrival of news. After the news is released, trading strategy becomes

the static optimal strategy which adjusts to parameter changes in price dynamics.
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2.4 Transient price impact

The transient model implies that the market impact of trading order decays with

time. This class of model consists of two components. The first one is the impact

as a function of trading rate, and the second component is the decay kernel. There

is empirical study verifying this feature of market impact, see Moro, Esteban and

Vicente (2009) [26]. They study the impact of large trading order that is executed

incrementally, which they call hidden order, and they find the market impact is

strongly concave in London stock exchange and Spanish stock market. Moreover,

they find the market impact grows according to a power law as time goes and

the impact revert to 0.5 ∼ 0.7 times its peak value. This type of model has two

component.

2.4.1 Linear transient model

One of the first linear transient models is proposed by Obizhaeva & Wang (2013)

[28]. In their model they develop a general framwork for a limit order book to

capture the dynamics of supply/demand. They show that the optimal strategy

of execution does not depend on static property such as bid-ask spread, rather it

depends on dynamic property like the resilience after a trade.

In the extended model of Obizhaeva & Wang (2013) [28], a market order which

trades dXt shares of asset at time t is put on the limit order book, where the limit

order follows a uniform distribution with a density of limit order q. It means there

are qdP limit orders available in the price interval from P to P + dP , and it does

not depend on current price P . According to Gathetal [14], in a buy program,

dXt > 0, after putting the market order in the limit order book, it will drives the

price up to

PX
t+ = PX

t + qdXt,

here the superscript means that the price is the one under trade impact. The

decay component of transient model is modeled by a function called decay kernel,

which is a mapping G : R+ 7→ R+. Then we say the price impact created at

time t by placing the market order dXt is qdXt = G(0)dXt. As time goes by, at

time s > t, the trading impact of order dXt decays to G(s − t)dXt. Hence, the

cumulative price impact until time t created by placing several orders dX during
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interval [0, t] is the sum of the impact decayed to time t over that period, which

can be expressed as

dPX
t = P 0

t +

∫ t

0

G(t− s)dXs

By Gatheral (2012) [15], one can show that the expected cost of a general order

execution strategy is

E [CT (X)] =
1

2
E
[∫ T

0

∫ T

0

G(| t− s |)dXsdXt

]
;

From a result obtained by Gatheral (2012) [15], we have

Theorem 2.1. Let the decay kernel G be a nonincreasing convex function. Then

there exists a unique optimal strategy X∗ for each combination of X0 and T . More-

over, X∗t is a monotone function, which means there is not transaction-triggered

price manipulation.



Chapter 3

Formulation of problem

3.1 Optimisation problem

In Gatheral (2010) [13], they propose that an absolutely continuous order execution

strategy π results in a price process of the form

Sπt = S0
t +

∫ t

0

f(ẋs)G(t− s)ds.

Here, S0
t denotes the price without trading impact at time t, Sπt denotes the price

under impact of trading strategy π . f(ẋs) represents the instantaneous impact

when placing an order xt at time t, ẋs is the rate of trading, i.e. derivative of

position X with respect to time, and G(· ) represent the decay kernel as before.

In the Curato, Gatheral and Lillo (2014) model [11], an stochastic term modeled

by Brownian motion is added, which can be expressed as follows,

S(t) = S0 +

∫ t

0

f(ẋ(s))G(t− s)ds+

∫ t

0

σdW (s), (3.1)

where ẋ(t) is the rate of trading, number of shares trading in each unit of time,

which is the first derivative of x with respect to time t, v(t) = ẋ(t) = dx/dt. And

as usual f(Ẋs) represents the instantaneous impact when placing an order Xt at

time t and G(· ) represent the decay kernel. σ is the volatility and W (t) is the

standard Brownian motion. From the above expression we can see that the drift

term is actually the accumulative impact at time t of all orders traded from time

0 to t.

18
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The strategy we aim to find is the one π = x(t)t∈[0,T ] that minimizes the expected

execution cost and liquidates our total position X in a finite time interval [0, T ].

Thus the expected cost of execution by following strategy π = x(t)t∈[0,T ] is

C(π) = E
[∫ T

0

ẋ(t)(S(t)− S(0))dt

]
=

∫ T

0

ẋ(t)E [(S(t)− S(0))] dt

=

∫ T

0

v(t)

∫ t

0

f(v(t))G(t− s)dsdt.

(3.2)

This is because the expectation of Wiener process is 0 and the trading strategy

π = x(t)t∈[0,T ] is deterministic as it is a static strategy, so the expectation can be

put into the integral, yielding the expression as above. Moreover the liquidation

constraint can be expressed as a simple integral,∫ T

0

v(t)dt = X. (3.3)

This formulation of execution cost corresponds to ‘implementations shortfall’ as

mentioned in Perold (1988) [29]. Moreover, in the Silviu, Gennady and Steven

(2011) [30], they argue that a statically optimal strategy is also a dynamically

optimal strategy if the expected execution cost depends on
∫ T
0
v(t)S(t) only and

S(t) is a martingale. So the static optimal solution from cost function (3.2) with

constraint (3.3) is also dynamically optimal strategy in this setting.

3.2 Regularity and irregularity

The functional forms of f(·) and G(·) fully specify the model. But not all com-

bination of these two function is feasible due to issues from both financial and

mathematical aspects.

3.2.1 Regularity

A minimal requirement for regularity is that this constrained optimisation prob-

lem admits an minimizer. Another requirement is that the strategy π = x(t)t∈[0,T ]
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should be monotone function. For instance, a sell program should not involve inter-

mediate sell programme, as this is considered illegal. In Gatheral (2013) [14], they

argue that this regularity should be independent of investor specific risk-aversion.

This means some risk functional can not be used to define the regularity like ex-

pected utility. It is feasible to define regularity using expected cost. In addition,

they distinguish between the effects of price impact from profitable investment

strategies that can arise via trend following. Hence, it is a standard assumption

in literature that the price under impact SXt follows a driftless dynamics. Another

reason for that is we are usually considering a relatively short period of horizon,

making the effect of drift neglectable.

3.2.2 Irregularity

From here onwards, we introduce three kinds of model irregularities that may

appear in the impact mode. The existence of these irregularities means the model

is not well-specified.

The first kind is price manipulation.

Definition 3.1. (Price manipulation). A round trip is a trading trajectory that

satisfies x0 = 0 and xT = 0. A price manipulation strategy is a round trip

satisfying additional condition that

E [RT (π)] > 0.

From this definition, we can exploit the existence of price manipulation to decrease

the execution cost. For a risk-averse investor seeking to minimize risk functional

E(C(π)) + λV (C(π)), they may use this round trip strategy during some time

interval to decrease this objective function. This probably will give out an different

optimal trading strategy. However for a risk-neutral investor who seeks to minimize

objective function E[C(π))], the possibility of price manipulation may lead to

arbitrarily small value of objective function. It means for a risk-neutral investor,

the existence may result in the non-existence of optimal strategy.

The definition of price manipulation resembles the definition of arbitrage. This

implies a relation between price manipulation and arbitrage.
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Definition 3.2. A portfolio is called an arbitrage portfolio if V0 = 0 and P[VT >

0] = 1 and P[VT > 0] 6= 0 under probability measure P.

There is a link between arbitrage and price manipulation. According to Huberman

and Stanzl (2004) [17], in some models, repeating price manipulation may lead to a

weak form of arbitrage, called quasi-arbitrage. But there is difference between price

manipulation and arbitrage. The definition of arbitrage is in the ‘almost-surely’

sense. It implies that when pricing a derivative, we are looking for a portfolio

that exactly replicate the payoff of that derivative to be price. If such portfolio

exist, the initial value of that price should be exactly the same as the market price

of that derivative, otherwise, there is an arbitrage opportunity. However, price

manipulation is in the ‘average’ sense. The existence of price manipulation does

not ensure that every trade can improve the trader’s situation, but in average, it

will decrease the execution cost. When we are looking for an optimal execution

strategy, we are actually looking for a minimizer of a certain risk functional for

a particular investor. And this fact should be independent of any investor’s risk

preference, implying it should be defined in risk-neutral way. Thus it is reasonable

to define regularity condition for any impact model in terms of expected cost.

However, in Alfonsi, Schied and Slynko (2012) [2], by analyzing model with linear

instantaneous and permanent impact components, they discover another kind of

price manipulation, which they call transaction-triggered price manipulation.

Definition 3.3. (Transation-triggered price manipulation) A market impact model

adimits transaction-triggered price manipulation if the revenue of a sell (buy) pro-

gram can be increased by intermediate buy (sell) orders. Mathematically, there

exists X0, T > 0, and a corresponding order execution strategy π̃ such that

E[RT (π̃)] > sup{E[RT (π)]|π ∈ Π is a decresing (increasing) function of time.}

where Π is the set of all feasible strategies.

Alfonsi, Schied and Slynko [2] prove that the price impact must decay as a con-

vex non-increasing function of time to ensure the nonexsitence of this kind of

transaction-triggered price manipulation along with standard price manipulation.
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3.3 Functional form of components

Some empirical studies have given some clues on the functional form of two com-

ponent, f(· ) and G(· ), which completely specifies the model.

The instantaneous impact function f(· ) is strongly concave. The evidence comes

from Moro, Esteban and Vicente (2009) [26]. They study the impact of large

trading order that is executed incrementally, which they call hidden order, and

they find the market impact is strongly concave in London stock exchange and

Spanish stock market. Also by Lillo, Farmer and Mantegna [22], based on data

from New York Stock Exchange, on a double-logarithmic scale, the slope of each

curve varies from roughly 0.5 for small transactions in higher-capitalization stocks,

to about 0.2 for larger transactions in lower-capitalization stocks. This means a

power law is suitable for describing the behavior of instantaneous price impact.

In addition, Bouchaud, Gefen, Potters and Wyart [7], by analyzing the trade at

Paris Bourse, the decay kernel is found to be asymptotically a power law function

G(τ) ∼ 1

τ γ
.

The nonlinearity presenting in both the decay kernel and instantaneous impact

function give rise to the possible existence of price manipulation as defined in 3.1.

We first present a proposition obtained by Gatheral and Schied (2013) [14],

Proposition 3.4. Assuming the price process as equation (3.1), consider a model

with general nonlinear instantaneous impact function f(· ) and nonincreasing de-

cay kernel G(· ) with G(0) := limt↓0G(t) < ∞, then this model adimits price

manipulation.

For this reason, we should consider decay kernel of the form G(t− s) = (t− s)−γ,
which means the decay kernel is singular only at the origin. In Gatheral (2010)

[13], the regularity requirement of no price manipulation imposes a restriction

on the possible combination of parameter γ and σ. In detail, for the power law

instantaneous function of form f(π̇) ∝ sign(π̇) |π̇|σ and a power law decay function

of form G(t − s) = (t − s)−δ, the necessary conditon for the absence of price

manipulation is,

γ + δ > 1, γ > γ∗ = 2− log 3

log 2
' 0.415
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As it is the necessary condition, it does not preclude the possibility of price ma-

nipulation. It has been proved that there is a model which satisfies the necessary

condition but still admits price manipulation. However, as in Curato, Gatheral

and Lillo (2014) [11], we only consider the situation where this necessary condition

is satisfied.

3.4 An approach of solving the problem

In the case when δ = 1, this problem reduces to optimization with linear impact

function. This problem has been well studied. A proposition is proposed by

Gatheral [14], which implies,

Theorem 3.5. Suppose G(· ) is positive definite. Then π∗ is the minimizer of

cost function C(π), if and only if there exist a constant λ such that π∗ satisfies the

following ∫ T

0

G(|t− s|)dπ(s) = λ

The solution for the case where G(t−s) = (t−s)−γ is given by equation (2.8) and

(2.9) in Curato, Gatheral and Lillo (2014) [11].

3.4.1 Stationarity condition

The optimization problem for nonlinear case is mathematically more complicated.

A progress has been made by Dang (2014) [12]. In the paper of Curato, Gatheral

and Lillo (2014) [11], they argues that given f ∈ C1(R) and G ∈ L1[0, T ], for the

class of functions x satisfying

• x is absolutely continuous on (0,T),

• f ◦ v ∈ L1[0, T ],

the necessary condition for the stationarity of the functional of equation (3.2)

holds: ∫ T

0

G(|t− s|)F (v(s), t)ds = λ, (3.4)
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where

F (v(s), t) =

f(v(s)), s 6 t

v(s)f ′(v(t)), s > t.
(3.5)

We note that apart from the non-linearity from G(|t− s|), F (v(s), t) is also a

source of non-linearity. In fact, F (v(s), t) also depends on f ′, the first derivative

of instantaneous impact function, i.e. the response of impact to trading rate, which

involves the future trading rate v in the equation. And equation (3.4) implies that

it can not be converted into a weakly singular nonlinear Fredholm of the first kind

for the trading rate, where there should be no interaction between present and

future times, by Curato (2014)[11].

3.4.2 Discretized expression

The following derivation of disvretized expression is based on Curato, Gatheral

and Lillo (2014) [11]. Applying discretized homotopy analysis method to equation

(3.4), we first split the time interval [0, T ] into N subinterval of equal length.

Denote by ti the times, where ti = iT/N, i ∈ {0, 1, ..., N}. This will give non-

linear system of N equations in the variables vi = v(ti) where i ∈ {1, ..., N}

N∑
j=1

GijFij(v) = λ.

We note here the index i refers to the time times, for each fixed i there should be

one equation. And the index j here refers to the discretization of integral interval.

The nonlinear function F (· ) of equation (3.5) becomes a matrix of dimension N

by N

Fij =

f(vj), j ≤ i

vjf
′(vi), j > i.

The decay kernel G(t−s) becomes a Toeplitz real symmetric N by N matrix given

by

Gij =

∫ ti

ti−1

∫ tj

tj−1

G(|t− s|)dsdt

For our case when the decay kernel follows a power law G(τ) = τ−γ, we have

s ∈ [tj−1, tj] and t ∈ [ti−1, ti]. As i > j, then tj ≤ ti−1 and s ≤ t. Thus by doing
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this simple integration we have for i > j

Gij =

∫ ti

ti−1

∫ tj

tj−1

(t− s)−γdsdt

=
1

(1− γ)(2− γ)

(
T

N

)2−γ

{(i− j + 1)2−γ − 2(i− j)2−γ + (i− j − 1)2−γ}

And for cases where i = j,

Gii =
2

(1− γ)(2− γ)

(
T

N

)2−γ

.

As we are considering peicewise constant trading strategy, the liquidation con-

straint can be expressed as
N∑
i=1

vi =
NX

T
. (3.6)

Finally, the execution cost (3.2) can be written in terms of discrete approximation

as

C[v] =
N∑
i=1

N∑
j=1

vif (vj)Aij, (3.7)

where Aij matrix describe the decay kernel G(t− s)

Aij = 0, j > i,

Aii = Gii/2;

Aij = Gij, j < i.

In conclusion, the best execution problem becomes an optimization problem as

follows,

C[v] =
N∑
i=1

N∑
j=1

vif (vj)Aij

subject to
N∑
i=1

vi =
NX

T
.

(3.8)
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Numerical algorithms

4.1 The reason for applying numerical method

We restrict our trading strategy to the class of piecewise constant strategies. Thus

we divide the time horizon [0, T ] into N subintervals of equal length. Then we

seek to minimize the cost function (3.7) by determining N trading rates vi under

the liquidation constraint that all the asset held should be traded. In the linear

impact case, when f(v) ∝ v, the discrete cost function reduces to a N -dimensional

quadratic form. We can see by looking at:

C[v] =
N∑
i=1

N∑
j=1

vif (vj)Aij

=
N∑
i=1

N∑
j=1

vivjAij

where Aij are only functions of time, not depending on any trading rates vi. This

kind of problem can be classified as a quadratic programming problem.

The general form of a quadratic problem (QP) is as follows,

min
x

q(x) =
1

2
xTGx+ xT c

subject to aTi x = bi, i ∈ E

dTi x = ei, i ∈ I,

26
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where x, c and ai, di are all n-dimensional vectors, G is symmetric n× n matrix,

E and I is the set of indices representing the number of equality and inequality

constraints. Quadratic programs can always be solved in a finite amount of cal-

culation steps, but for problems with different features for objective function and

different numbers of inequality constraints, the effort required to solve the problem

varies largely. In the case where the Hessian G is positive semi-definite, we call it

convex quadratic program, and this problem is similar to solving a linear program

in terms of difficulty. For our case, Aij is clearly positive definite as G(τ) = |τ |−γ

is positive semi-definite. So the effort required to solve this optimization problem

is similar to a linear program.

In the nonlinear case, the objective function involves terms that are neither quadratic

or linear, so the numerical minimization involves finding local minima of a com-

plicated nonlinear function of N trading rates vi. These local minima are not

necessarily to global minimum.

In the general case, we need to perform a non-convex optimization for the cost

functional expressed in terms of N trading rates vi, subject to the liquidation

constraint. This is because, as shown by the empirical data, the instantaneous

impact function is strongly concave and the decay kernel is asymptotically as a

power law function. Thus for nonlinear case, we need to use numerical methods.

4.2 Local sequential quadratic programming

The sequential quadratic programming is one of the state-of-the-art approaches

to solving non-linear optimization problem, it is especially powerful when dealing

with nonlinear optimization with significant non-linearity in the constraints. The

sequential quadratic programming is an iterative method. In each step, the algo-

rithm solves a quadratic sub-problem and generates an iteration step, and then

use the solution to construct the next iterate. Convergence to local minimum is

then guaranteed.

Consider an equality constrained problem of the following form

min
x
f(x)

subject to c(x) = 0,
(4.1)
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where f : RN 7→ R and c : RN 7→ R are smooth functions. The idea of SQP is

to model (4.1) by a quadratic sub-problem at iterate xk and use this minimizer

to construct next iterate. The difficulty of this algorithm is to properly design

the quadratic sub-problem. In Jorge and Stephen (2006) [27], they describe a

simplest way of derivation of SQP, where they apply Newton’s method to the

Karush-Kuhn-Tucker optimality condition.

4.2.1 Karush-Kuhn-Tucker optimality condition

First we need to introduce some concepts on constrained optimization theory be-

fore we move on to the derivation of sequential quadratic programming.

Consider a general constrained optimization problem in the form of

min
x∈Rn

f(x) subject to

ci(x) = 0, i ∈ E ,

ci(x) > 0, i ∈ I,
(4.2)

where objective function f(· ) and constraint function ci are all smooth on hyper-

plane Rn, and there should be finite number of equality and inequality constraints,

which means E and I are finite sets.

Definition 4.1. The active setA(x) at any feasible x consists of indices of equality

constraints from E and the indices of the inequality constraints for which ci = 0;

i.e.

A(x) = E ∪ {i ∈ I | ci = 0} (4.3)

At a feasible point x, the inequality constraint is said to be inactive if ci(x) > 0,

and the inequality constraint is active if ci(x) = 0.

Definition 4.2. (LICQ.) Given a point x and the active set A(x) defined as

definition 4.1, we say linear independence constraint qualification (LICQ) holds if

the set of active constraint gradients {∆ci(x), i ∈ A(x)} is linearly independent.

We define the Lagrangian function of problem (4.2) as

L(x, λ) = f(x)−
∑
i∈E∪I

λici(x). (4.4)
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The following condition is a necessary condition for optimality, called first-order

necessary conditions or Karush-Kuhn-Tucker condition.

Theorem 4.3 (First-Order necessary condition). Suppose that x∗ is a local min-

imum, that function f(·) and ci(·) are all smooth, meaning the first derivative

exists, and LICQ holds at x∗. Then there is a Lagrange multiplier vector λ∗ with

i ∈ E ∪ I such that the following conditions are satisfied at (x∗, λ∗)

∆xL(x∗, λ∗) = 0

cI(x
∗) = 0, for all i ∈ E

c(x∗) > 0, for all i ∈ I

λ∗i > 0, for all i ∈ I

λ∗i ci(x
∗) = 0, for all i ∈ E ∪ I.

(4.5)

From equation (4.4), the Lagrangian function in our case where there is only one

constraint is

L(v, λ) = C[v]− λ

(
N∑
i=1

vi −
NX

T

)
.

Or we can change the constraint to another equivalent form,

T

NX

N∑
i=1

vi = 1,

and this gives rise to another equivalent form of Lagrangian function which is

L(v, λ) = C[v]− λ(
T

NX

N∑
i=1

vi − 1)

In general case, the Jacobian matrix of the constraint is defined as

J(x)T = [∆c1(x),∆c2(x), ...,∆cm(x)] ,
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where ∆ci here denotes the gradient of constraint ci(x) = 0. That is,

J(x)T =
[
∇c1(x) ∇c2(x) ... ∇cm(x)

]

=



∂c1
∂x1

∂c2
∂x1

... ∂cm
∂x1

∂c1
∂x2

∂c2
∂x2

... ∂cm
∂x2

∂c1
∂xn

∂c2
∂xn

... ∂cm
∂xn


In our one constraint case, the Jacobian becomes

J(v)T =


T
NX
T
NX

...
T
NX



The first-order condition (KKT condition) (4.3) of the one equality constrained

optimization problem can be written as a system of N + 1 equations in the N + 1

unknowns vi, i = 1, 2, ..., N and λ:

F (v, λ) =

[
∇f(v)− J(v)Tλ

c(v)

]
= 0 (4.6)

where

∇f(v) =


∂c(v)
∂v1
∂c(v)
∂v2

...
∂c(v)
∂vN

 .
In our case,

∂c[v]

∂v1
=

N∑
j=1

f(vj)A1j + v3f
′(v1)A31 + ...+ vNf

′(vN)AN1

=
N∑
j=1

f(vj)A1j + f ′(v1)
N∑
j=1

vjAj1
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Similarly, we have derivatives with respect to other components,

∂C[v]

∂vi
=

N∑
j=1

f(vj)Aij + f ′(vi)
N∑
j=1

vjAji.

Any solution (x∗, λ∗) of the equality-constrained problem (3.8) for which J(x∗)

has full rank satisfies the first order condition (4.6).

One approach to solve the non-linear equations (4.6) is by using the Newton’s

method.

4.2.2 Newton’s method

In linear case, Newton’s method constructs a quadratic approximation by taking

the second order Taylor series expansion of objective function f around iterate vk.

The solution to this quadratic model is the Newton step at current iterate. In the

nonlinear case, Newton’s method is constructed in a similar way, but using linear

Taylor approximation which consits of only the first two terms, i.e. function value

and its gradient at current iterate xk.

Theorem 4.4 (Multidimensional version of Taylor’s theorem). Assume that f :

Rn 7→ R is continuously differentiable in convex set A and x and x+ t are vectors

in A. We then have

f(x+ t) = f(x) +

∫ 1

0

J(x+ st)tds.

We can approximate the second term in the above expression by Jacobian at the

kth iterate, that is J(x)t. Thus we have a linear model Mk(p) for approximating

f(x+ t) at iterate k, writing

Mk(t) := f(xk) + J(xk)t

Newton’s method takes the step tk to be the solution to equation Mk(t) = 0,

i.e. tk = −J(xk)
−1f(xk).

Thus the procedure of Newton’s method can be described formally as follows,

First Pick a starting point x0.
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for loop k=1,2,...

Calculate the Newton step tk by

J(xk)tk = −f(xk); (4.7)

and then generate the next iterate xk+1 by xk+1 ← xk + tk;

end for

The reason why we use a linear model for deriving Newton step tk is that a linear

model usually has a solution and converge to the solution rapidly. However, the

Newton’s method has some drawbacks that we should take into account when

examining the results form Newton method.

• The algorithm may not result in a solution if the starting point is far away

from it. When J(xk) = 0, the Newton may not even be defined.

• The gradient J(· ) may not be easy to obtain.

• When the number of variable n tends to be large, it is time-consuming to

calculate the Newton step.

The Jacobian of (4.6) with respect to v and λ is given by F ′(v, λ), where the first

column is the derivative with respect to v and the second column is the derivative

with respect to λ,

F ′(v, λ) =

[
∇2
vvL(v, λ) −J(v)T

J(v) 0

]
The Newton steps from the kth iterate (vk, λk) can be obtained to generate the

next iterate by [
vk+1

λk+1

]
=

[
vk

λk

]
+

[
tk

tλ

]
.

Here the Newton step is the solution to the Newton-KKT system, that is, it

satisfies the following system of equation,[
∇2
vvLk −JTk
Jk 0

][
tk

tλ

]
=

[
−∇fk + JTk λk

−ck

]
. (4.8)

The sufficent condition for which the Newton iteration is well defined is that the

KKT matrix is non-singular at (vk, λk). The matrix is non-singular if, by Nocedal

(2006) [27],
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• The Jacobian of constraints J(v) has full row rank;

• The Hessian ∇2
vvL(v, λ) is positive definite when (x, λ) satisfies dT∇2

vvd > 0

for all d 6= 0 such that J(v)d = 0.

Under these assumptions, the Newton’s method is quadratically convergent and

is a good algorithm for solving equality-constrained problem, provided the initial

point is too far away to local minimum.

4.2.3 SQP framework

The SQP framework views Newton step and Newton-KKT system in another

way. Suppose our choice of modelling optimization problem (4.1) changes to use

quadratic program at iterate (vk, λk) as following

min
t

fk +∇fTk p+
1

2
pT∇vvLkp

subject to Akp+ ck = 0.
(4.9)

If the above assumption that the KKT matrix is non-singular is satisfied, this

optimization problem has a unique solution (pk, lk) to system of equations

∇2
vvLkpk +∇fk − JTk lk = 0 (4.10)

Jkpk + ck = 0. (4.11)

If ATk is subtracted from both sides of the first equation in (4.8), we obtain[
∇2
vvLk −JTk
Jk 0

][
pk

pk + λk

]
=

[
−∇fk
−ck

]
.

Then we set λk+1 := pk + λk, and by comparing with equation (4.10), we have

λk+1 = lk and pk that solves (4.9).

Both the Newton viewpoint and the SQP framework can generate the iterate

(vk+1, λk+1) required to solve the problem. However, the Newton approach can

facilitate our analysis while the SQP framework can be used to derive a practical

algorithm.

Algorithm description:
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Start Pick an initial point (v0, λ0); set k = 0.

Do until a specified tolerance is satisfied. Calculate∇2
vvLk, fk,∇fk, ck and J(vk);

Solve system of equation (4.10) to get pk and lk; Update the iterate xk+1 ←
xk + pk and λk+1 ← lk;

Repeat(end)

We find that in the objective function (4.9), the second term ∇fTk p can be replaced

by the gradient of Lagrangian function ∇L(vk, λk). This is because of constraints

in (4.9) and (4.1),

∇fTk p =
[
∇vLk + J(vk)

Tλk
]
p

J(vk)
Tp = −c(vk) = 0

.

This fact motivates us a way of choosing a proper quadratic model (4.9): first the

general nonlinear optimization problem of form (4.1) can be transformed to the

corresponding Lagrangian function, and then derive a quadratic approximation of

the Lagrangian function and a linear approximation of the constraint to form the

quadratic SQP subproblem (4.9).

4.2.4 Multistart strategy

One way of finding a global minimum in a constrained nonlinear optimization

problem is by multistart strategy. This algorithm starts the local solver, which in

our case is SQP local solver, from multiple start points to sample multiple basins

of attraction.

Definition 4.5. Provided an objective function is smooth, the opposite of gradient

i.e. −∇f(x) will give the direction of quickest descent. The basin of attraction

is the set of initial points for which the direction of descent leads to same local

minimum.

The most basic multistart strategy is to generate uniformly distributed starting

points and then run local solver from these points. After obtaining these multiple

local minima, we take the solution with the smallest objective function value as

the global minimum. In theory, this algorithm can reach a global minimum with

probability one as the number of start points tend to infinity. In Matlab, multistart

algorithm has several advantages when compared to GlobalSearch,
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• Parallel computing can be used in ‘MultiStart’.

• Use other local solver other than ‘fmincon’

• Customized starting point can be included in the starting set as well as

random start point.

Generate start points

Matlab global optimization toolbox provides several ways to set start points for

the local solver.

• Passing a positive integer k to function run(ms, problem, k). In this way,

Matlab generate k−1 uniformly distributed random start points from which

the local solver runs. Together with an initial start point in problem struc-

ture, k start points are used in total.

• Pass a ‘RandomStartPointSet’ object. By passing a ‘RandomStartPointSet’

object to run(ms, problem, · ), Matlab generates a specified amount of uni-

formly distributed random variable as start points.

• Passing a ‘CustomStartPointSet’ object. By the same way, it allows the local

solver to start from the points supplied by the user.

In our case, we have a liquidation constraint (3.6), which also applies to all the

start points. According to Gatheral (2014) [11], where they test various kinds of

distribution for the start points including uniform and Dirichlet distribution, they

find qualitatively similar optimal execution strategies.

Thus we choose a procedure as follows to generate the multiple start points: first

we generateN−1 identically independently uniformly distributed random variable,

then use the constraint vN = N∗X/T−
∑N

i=1 vi to calculate the remaining variable.

Here, we choose vi ∼ U(−4.9, 4.9), i = 1, 2, ..., 99.

Each row of the generated matrix represents a start point. This matrix is then

used to create a ‘CustomStartPointSet’ object, which is then passed to function

run(· ).
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Create problem structure

One of the ingredients for multistart method is the problem structure. The prob-

lem structure contains information in terms of what kind of algorithm the local

solver use, the objective function, bounds, constraints and so on. In Matlab, the

problem structure can be created in two ways, exporting from the optimization

toolbox or use ‘createOptimProblem’ function. We choose to use createOptim-

Problem function as it is more convenient to change its options.

The procedure is first to define and create all the variable required, such as ob-

jective function handle, equality and inequality constraint vector and upper and

lower bounds and so on.

By running the local solver set with default options, we find the local solver exit

prematurely before it converge to the local minimum. This issue can be solved

simply by change some options in the problem structure. From our experiment,

when setting the maximum number of iteration to 600 and the maximum number

of function valuation to 100000, more than 90% of iteration can exit with a positive

exit flag, meaning the local solver actually converges to the corresponding local

minimum.

This can be easily done by creating an option structure using ‘optimoption’ func-

tion as follows,

opts=optimoptions(@fmincon,‘MaxIter’,600,‘MaxFunEvals’,100000);

Set up solver object and parallel pool

A solver object contains the preference in terms of global option for the optimiza-

tion. For instance, one can set the property ‘Display’ to ‘iter’ to show information

after each local solver finishes running. The information displayed include num-

ber of function valuation, first-order optimality, function value and exit flag. A

positive exit flag implies the local solver has find a local minimum, otherwise it

means the local solver stops prematurely.

Matlab enables the user to run local solver from multiple start points in parallel. In

contrast to serial computing where the computation is executed one after another,

parallel computing is a way of execute computation simultaneously. It is based
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on the principle that a large computation task can usually be divided into smaller

and similar subtasks, which then can be sent to a number of connected workers

and then return the results to the server. Thus parallel computing can be run in

a multicore processor or when user has access to a network of processors.

The results of running multistart is usually random due to the random set of start

points, thus the time it costs is also random. Normally, parallel computing will

reduce the time required to run the optimization, and this benefit will be more

pronounced as the number of start points becomes larger. From the data provided

in Matlab user’s guide [20], when there are 1000 start points to run, parallel

computing usually reduce the time cost by 1/3. In our numerical experiment,

we will use a two-core processor, and by starting function ‘matlabpool’ using the

‘local’ profile, we are able to connect to 4 workers, which means we can run 4 local

solvers for 4 different start point simultaneously.

Output sturcture

Matlab can record most of the information we need to analyze the result. By

running the following code,

[xmin,fmin,flag,outpt,allmins]=run(ms,optimproblem,tpoints);

one can keep five kinds of information which help us examine the reliability of the

numerical results.

• xmin: ‘xmin’ is of the same dimension as the start points. This variable

stores the global solution found by running the local solver from all the

feasible start points.

• fmin: This is a scalar and it stores the funcation value of the global minimum

point, i.e. the smallest objective function value among all the local minima.

• flag : It is the integer that indicate why the algorithm terminates. In our mul-

tistart algorithm, each time of running the local solver with a different start

point will result in an exitflag. In the case of using SQP algorithm, an exit

flag of ‘1’ implies that the first order optimality is less than ‘option.TolFun’

and maximum violation of constraint is less than ‘option.TolCon’. This
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means the solver has converged to a local minimum. An integer of ‘0’ implies

that the solver stops prematurely. This is because the number of function

valuation exceeds the user-specified ‘options.MaxFunEvals’ or the number

of iteration exceed user-specified ‘options.MaxIter’. This problem can be

settled by changing the options.

• outpt : ‘outpt’ is a struct containing information after running the global

optimization. Usually, it keeps the number of total function valuation, total,

successful, incomplete and no solution local solver. It also offer a field briefly

summarizing the result of optimization.

• allmins : Multistart generates a vector of ‘GlobalOptimSolution’ object, the

dimension of which is the number of local solver exiting with a positive

flag. Each element of the vector stores the information of an individual

local minimum, ordered by the objective function value from the lowest to

the highest. This information on each local minimum includes the location,

objective function value, exit flag, outpt struct and the start point used to

reach the minimum.

No guarantee for convergence to global minimum

Once again we note that there is no guarantee for the convergence to the global

minimum by using any of the algorithm provided in the Global Optimization

toolbox in Matlab. The most straightforward way to check is to increase the

number of start points, that is, running the local solver from additional start

points. If that does not generate a smaller function value, it means we have

reached a global minimum. Another way of improvement is by tightening the

region. When dealing with practical problems, there usually exist a reasonable

region in which we believe the global minimum lies. Thus by bounding the region,

we have, to some extent, the assurance that Multistart finds the global minimum.
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Numerical results

In this chapter, we will investigate how the optimal strategy behaves in different

parametric sets. We will first investigate the behaviour of optimal strategy in the

linear impact case, and we will take the this case as a benchmark for comparing

with the nonlinear cases.

In general, the instantaneous function is of the form f(v) ∝ sign(v) | v |δ.
Study on market data shows it behaves as a strongly concave function. By Lillo,

Farmer and Mantegna [22], the exponent varies from roughly 0.5 for small transac-

tions in higher-capitalization stocks, to about 0.2 for larger transactions in lower-

capitalization stocks. The general form of the decay kernel is G(τ) = τ−γ as shown

by market data that the decay kernel is asymptotically a power law function. The

requirement of no transaction-triggered price manipulation restricts the possible

combination of parameters. By Gatheral (2010) [13], the necessary conditon should

be

γ + δ > 1, γ > γ∗ ' 0.415.

Note that the above is only necessary condition, it does not preclude the exis-

tence of transaction-triggered price manipulation. In the following sections, the

numerical results also indicate the existence of price manipulation even when this

necessary condition is satisfied. From here onwards, we will always examine the

cases where this necessary condition is satisfied.

39
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5.1 Linear impact case

When the exponent is equal to 1, the impact function reduces to a linear func-

tion, causing the objective function to be a quandratic form, which substantially

simplifies optimization problem of finding the optimal strategy. In the following,

we are always considering X as a proportion of market volume and we will set

X = 10% unless otherwise specified. Thus we set δ = 1 and γ = 0.5. We present

the optimal trading strategy in each period in figure 5.1.

Figure 5.1: The optimal trading strategy given by SQP when X = 0.1. The
total finite horizon T is divided into 100 trading periods. The vertical axis
is the constant average trading rate in each subinterval. The lowest expected

execution cost is 0.013116.

From our numerical result, the optimal strategy in the case of linear impact func-

tion has a good regularity. We find from the above graph, the trading strategy

is consecutive, that is, the trader need to trade in all of these subintervals. Also,

except in the beginning and end of the horizon, this strategy is quite close to the

VWAP strategy, where the order execution spreads evenly during the horizon T .

More importantly, a buy program does not include selling in any of these subinter-

val, resulting in a monotone and single-sign trading strategy. In terms of regularity,

this means this transient market impact model with linear instantaneous impact

function does not adimit transaction-triggered price manipulation.
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5.2 Nonlinear impact case

From here onwards, we will investigate the nonlinear instantaneous impact func-

tion and the corresponding optimal trading strategy. We will vary the nonlinearity

of instantaneous impact function, i.e. δ, from the slightly nonlinear case to the

strongly nonlinear case to investigate how the optimal strategy will change in each

situation.

5.2.1 Slightly nonlinear case

Fixing the exponent of the decay kernel γ to 0.5, we change the exponent of instan-

taneous impact function f(· ) to slightly less than 1, taking 0.95 as an example.

Remaining all other parameter unchanged, that is: the total position X is 0.1, the

number of total start points for the SQP algorithm is 1000, time horizon T = 1.

We present the numerical result in figure 5.2.

Figure 5.2: The optimal trading strategy given by SQP when X = 0.1, T =
1, N = 100. The vertical axis is the constant average trading rate in each

subinterval. The lowest expected execution cost is 0.014677.

From the graph, we can see the strategy in the nonlinear instantaneous impact

function case is in general similar to the one in linear case. However, there is

one significant difference: the trading strategy is no longer monotone or single-

signed. During the 10th to 50th subintervals, there exists selling for a buy program.
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The amount of sell is relatively small compared with those buy orders in other

subintervals, and these small sell orders are of similar size. Also, immediately

after executing a sell order in each subinterval, there will be a higher than usual

amount of buy order. This means the trader can exploit the benefit of selling a

small amount of asset before placing a relatively large buy order. This is what we

defined as transaction-triggered price manipulation.

We should mention here placing intermediate sell orders in a buy programme is

considered illegal. The reason why we can not regularize this issue is because

the numerical algorithm we are using, i.e. SQP, is based on derivative of La-

grangian function. If we add non-negativity constraint to the problem structure,

its derivative at the points for which at least one subinterval has no trading is

not well-defined. This indicates SQP algorithm is not suitable for this situation.

There are other numerical algorithms that does not depend on derivative and thus

can apply to the situation where non-negativity is taken into account. This will

be future improvement beyond this dissertation.

Another characteristic we should tell from the graph is that the sell orders lie in

a certain range of time rather than spreading sparsely within the whole horizon.

When the impact function is more concave, the number of periods when sell order

is placed increases and they are more broadly spread across the whole horizon,

which we can see in figure 5.3. Also we can see the magnitude of each sell order

also increases. All these changes may imply that the benefit from transaction-

triggered price manipulation becomes more evident as the degree of non-linearity

increases.

5.2.2 Strongly concave impact case

When γ is 0.5, the smallest feasible δ is 0.5, which still satisfies the no-dynamic-

arbitrage necessary condition. As before, we fix the total position X to be 0.1, the

number of total start points for the SQP algorithm to be 1000, time horizon T to

be 1, and we present the numerical result in figure 5.4.

From this graph we can see, the optimal strategy is not monotone either, and

it becomes more irregular than the slightly nonlinear impact case. The number

of subinterval where we should buy substantially decreases, while the number of
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Figure 5.3: The optimal trading strategy given by SQP when X = 0.1, T =
1, N = 100. The vertical axis is the constant average trading rate in each

subinterval. The lowest expected execution cost is 0.01608.

subintervals where we should sell increases. Specifically, the optimal trading strat-

egy consists of several large, single-period buy orders, separated by long-term but

small sell orders. Also we can see there is at least one period of selling before every

burst of buying. And by observing the optimal strategy under other parametric

sets, the trading for the last period of a buy program is always buying. This char-

acteristic again implies the existence of transaction-triggered price manipulation

as defined in definition 3.3, which means the trader can benefit from executing a

sell order before executing a buy program.

Another characteristic we should notice is the negative expected execution cost. In

this case where δ = 0.5 and γ = 0.5, the lowest expected cost is−0.00059449, which

indicates there exist a possibility of price manipulation defined as 3.1. This means

we can devise a round trip strategy, by which we have positive expected revenue.

Note here, this round trip strategy does not necessarily lead to positive revenue

every time we execute. But in expectation, this will result in positive revenue.

Because the repeated price manipulation can lead to a weak-form arbitrage, called

quasi-arbitrage, see Huberman and Stanzl (2004) [17]. This implies the non-linear

transient impact model (3.1) with f(v) = vδ, δ < 1 is not well-defined as it admits

arbitrage opportunity.
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Figure 5.4: The optimal trading strategy given by SQP when X = 0.1, T =
1, N = 100. The vertical axis is the constant average trading rate in each

subinterval. The lowest expected execution cost is -0.00059449.

We still need to mention that we have not incorporated the non-negativity con-

straint as the SQP algorithm can not deal with this situation. Other numerical

algorithm should be used in order to take the non-negativity constraint into con-

sideration.

5.3 Impact of discretisation

In our numerical scheme, we divide the finite time horizon into 100 equally length

subintervals, then we calculate the optimal trading strategy in different parametric

sets. We list all our results in figure 5.5.

Then we need to investigate if the way we discretize the finite horizon affects

the behaviour of optimal trading strategy and the lowest expected execution cost.

That is, whether N affects the optimal strategy.

We will first investigate the impact of N in one set of parameter, where δ =

0.55, γ = 0.5. As before, we fix X to be 0.1, and use 1000 start points in Multistart
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(a) δ = 0.6, γ = 0.5 (b) δ = 0.7, γ = 0.5

(c) δ = 0.8, γ = 0.5 (d) δ = 0.9, γ = 0.5

Figure 5.5: Four different parametric sets(δ = 0.6, γ = 0.5),(δ = 0.7, γ =
0.5),(δ = 0.8, γ = 0.5),(δ = 0.9, γ = 0.5) respectively. The number of subinter-

vals is fixed to be 100, with X = 0.1.

method. We choose N to be 50,100,150 respectively. The SQP method will give

the optimal strategy as in figure 5.6.

We can see that these three figures are qualitatively similar. In each case, the

optimal strategy is composed of several bursts of buying separated by small but

long-term selling. This shape of optimal trading strategy implies the existence of

transaction-triggered price manipulation.

However, there are several differences. The first thing we should notice is that, in

the case of finer discretization, the absolute value of both buying and selling orders

are larger than that of the case where the horizon is less finely discretized. Another

difference we can notice from these three plots is that the minimal expected cost

decreases as the number of subintervals increases. This may imply that a higher

frequency of trading enables the trader to better exploit the benefit of transaction-

triggered price manipulation.
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(a) δ = 0.55, γ = 0.5, N = 50 (b) δ = 0.55, γ = 0.5, N = 100

(c) δ = 0.55, γ = 0.5, N = 150

Figure 5.6: Optimal execution strategy with same set of parameters, under
three different discretizations, N=50, N=100 and N=150 respectively. X is

fixed to be 10% of unitary market volumn.

In order to verify the hypothesis that higher frequency of trading enables the

better exploiting price manipulation, we draw the lowest expected execution cost

as a function of degree of non-linearity δ, while fixing all other parameters. That

is, X = 0.1, T = 1, γ = 0.5. We run the test under two kinds of discretization,

dividing the finite horizon into 50 and 100 sunintervals respectively. The result is

presented in figure 5.7.

From the graph we first notice that the optimal execution cost is never larger in the

finer discretization case than that in less finely discretized case, for any degree of

nonlinearity δ. This verifies our hypothesis that higher frequency of trading enables

the trader better exploiting the benefit of price manipulation. When δ = 1, which

means the instantaneous impact funciton is linear, the optimal execution cost

under the two discretization is same. It implies that under the linear transient

impact model, the expected execution cost does not depend on how finely we
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Figure 5.7: The optimal expected execution cost as a function of degree of
non-linearity δ under two kinds of discretization. Other parameters are all fixed:

X = 0.1, 1000 start points, γ = 0.5.

discretize the trading horizon. But we are not sure if this phenomenon is specific

to SQP algorithm and it originates from the specification of transient model.

Further, the optimal expected execution cost is not a monotone function of degree

of nonlinearity in neither of these two cases. Also we should note that the dis-

crepancy of optimal execution cost between these types of discretization for the

same parameters becomes larger as the degree of nonlinearity increases. This may

imply that the benefit from finer discretization becomes more evident in the case

of strongly concave instantaneous impact function.

Moreover, when N = 100, there is a range of degree of nonlinearity δ for which

the optimal execution cost is negative. According to the tendency we observed,

we may infer that this region of negative execution cost is likely to enlarge as the

discretization becomes finer.



Chapter 6

Conclusion

6.1 Summary of results

In this dissertation, we review the existing two classes of market impact model.

We then focus our attention on the transient impact model, especially when the

instantaneous impact function is non-linear. We formulate the problem of liqui-

dating a large amount of asset in a finite time horizon as a nonlinear constrained

optimization problem. We compare the optimal strategies and the best expected

execution cost.

To solve this problem, we resort to the numerical algorithm of sequential quadratic

programming (SQP). This algorithm is derivative-based and is implemented by

solving a properly constructed quadratic sub-problem iteratively. We investigate

cases where the instantaneous impact function is slightly concave, strongly con-

cave and linear. We also focus our attention on the possible existence of price

manipulation. We find that in the linear case, the optimal execution strategy be-

haves well. There is larger buying at the beginning and end of the time horizon

for a buy program, and there is no intermediate selling, which means no price

manipulation exists. As the instantaneous impact function becomes concave, in-

termediate selling arises. Moreover, as the degree of nonlinearity increases, there

is more intermediate selling and the optimal expected execution cost decreases

incrementally. When the degree of non-linearity becomes very strong, the opti-

mal trading strategy is comprised of short-term bursts of buying separated by

long-term but small selling for a buy program. Moreover, we find that for some

sets of parameters, the optimal expected execution cost becomes negative. This
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means that price manipulation exists, which can lead to a weak form of arbitrage:

quasi-arbitrage. This suggests that this transient market impact model is not

well-defined and needs to be regularized.

Moreover, we examine the impact of discretization. We find that we have quali-

tatively similar optimal trading strategies by different discretisation schemes, and

they all admit the existence of transaction-triggered price manipulation in nonlin-

ear cases. However, the method of discretization affects the optimal strategy. Our

results show that finer discretization will lead to lower expected execution cost; in

some regions of parameter, this even leads to negative expected cost. This may

imply that a higher frequency of trading for the same set of parameters enables

the trader to better exploit the benefit of transaction-triggered price manipulation.

Furthermore, the discrepancy between two different discretization schemes tend

to increase as the degree of nonlinearity increases. The discretization scheme does

not affect the optimal strategy when the instantaneous function is linear.

6.2 Weakness

In this project, we focus on finding an optimal trading strategy by using numerical

algorithm, sequential quadratic programming. This algorithm is based on deriva-

tive, so we are not able to impose the non-negativity constraint to the optimization

problem. By using this scheme, we find the transient model admits transaction-

triggered price manipulation and further in some parametric sets it admits price

manipulation. As a result, we conclude that the transient model (3.1) is not well-

defined. However we are still not sure if this phenomenon is a result of numerical

instability, which need to be further investigated.

6.3 Future work

As we mentioned, when we add a non-selling constraint to a buy program, the

derivative of Lagrangian function at points for which some components are zero

is not defined, so the SQP algorithm is no longer suitable and we need to resort

to other algorithms. One of the candidates would be the direct search method,

especially generating set search. By using the direct search method, we may be
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able to find an optimal trading strategy that precludes the existence of transaction-

triggered price manipulation.

Moreover, we are expecting that the functional form of f(x) can be preserved

no matter how fast we are trading. This kind of simplification definitely reduces

the effort needed for computation and analysis. However, in practice, this is an

unrealistic assumption. When we are trading at an arbitrarily high rate, the

liquidity in the market order book is not enough. Thus we trade deeply into

the limit order book, where liquidity is less ample. Empirical study shows that

when trading is executed at a high rate, the instantaneous market impact becomes

convex. This motivates us to replace the current form of f(ẋ) by a concave-convex

impact function, which incorporate the penalty to excessively high trading rate.

This improvement could possibly remove the existence of price manipulation.

The third improvement is adding bid-ask spread into the transient model. Price

dynamics (3.1) actually models the evolution of mid-price. When an order is

executed, an extra cost of half of the bid-ask spread applies. The bid-ask spread

can be seen as a penalty to wrong-way trading. Wrong-way trading is intermediate

selling in a buy program, or buying in a sell program. The addition of bid-ask

spread provides a way to eliminate or decrease the price manipulation.



Appendix A

Matlab code

The following is the codes implementing Multistart method with parallel com-

puting to obtain the optimal strategy by Matlab. The code consists of several

sections.

A.1 Start points sampler

The first step of implementing Multistart method is to generate start points. In

our case, the start points is sbuject to a constraint, i.e.
∑N

i=1 vi = NX/T . This can

be simply fulfilled by first generating N − 1 random variable and then subtracting

from the sum.

Figure A.1: Matlab code for generating multiple start points

51



Appendix A. Matlab code 52

A.2 Cost function

The liquidation cost function is expressed as 3.7, which can be coded by a nested

loop.

(a) Calculate matrix Aij

(b) Cost function

Figure A.2: Matlab code: discretized cost function
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A.3 Multistart method

The steps required to use multistart method for sequential quadratic optimisation

includes writing constraints, creating problem structure, create solver object and

running local solver. The code is shown as follows.
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(a) Initialise prarmeter and create objective function and constraint

(b) Create problem structure and solver object,and set up parallel computing

Figure A.3: Initialisation, creating problem structure and solver object, and
setting up parallel computing
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(a) Creat start point set and run local solver

(b) Set plotting property

Figure A.4: Running local solver and plotting
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[2] Aurélien Alfonsi, Alexander Schied, and Alla Slynko. Order book resilience,

price manipulation, and the positive portfolio problem. SIAM Journal on

Financial Mathematics, 3(1):511–533, 2012.

[3] Robert Almgren and Neil Chriss. Value under liquidation. Risk, 12(12):61–63,

1999.

[4] Robert Almgren and Neil Chriss. Optimal execution of portfolio transactions.

Risk, 3:5–40, 2001.

[5] Robert F Almgren. Optimal execution with nonlinear impact functions and

trading-enhanced risk. Applied Mathematical Finance, 10(1):1–18, 2003.

[6] Dimitris Bertsimas and Andrew W Lo. Optimal control of execution costs.

Journal of Financial Markets, 1(1):1–50, 1998.

[7] Jean-Philippe Bouchaud, Yuval Gefen, Marc Potters, and Matthieu Wyart.

Fluctuations and response in financial markets: the subtle nature of ‘random’

price changes. Quantitative Finance, 4(2):176–190, 2004.

[8] Gary P Brinson, L Randolph Hood, and Gilbert L Beebower. Determinants

of portfolio performance. Financial Analysts Journal, 51(1):133–138, 1995.

[9] SEC CFTC and US SEC. Findings regarding the market events of may

6, 2010. Report of the Staffs of the CFTC and SEC to the Joint Advisory

Committee on Emerging Regulatory Issues, 2010.

[10] Louis KC Chan and Josef Lakonishok. The behavior of stock prices around

institutional trades. Journal of Finance, pages 1147–1174, 1995.

56



Bibliography 57

[11] Gianbiagio Curato, Jim Gatheral, and Fabrizio Lillo. Optimal execution with

nonlinear transient market impact. Available at SSRN 2539240, 2014.

[12] Ngoc-Minh Dang. Optimal execution with transient impact. Available at

SSRN 2183685, 2014.

[13] Jim Gatheral. No-dynamic-arbitrage and market impact. Quantitative Fi-

nance, 10(7):749–759, 2010.

[14] Jim Gatheral and Alexander Schied. Dynamical models of market impact

and algorithms for order execution. HANDBOOK ON SYSTEMIC RISK,

Jean-Pierre Fouque, Joseph A. Langsam, eds, pages 579–599, 2013.

[15] Jim Gatheral, Alexander Schied, and Alla Slynko. Transient linear price

impact and fredholm integral equations. Mathematical Finance, 22(3):445–

474, 2012.

[16] Joel Hasbrouck. Empirical market microstructure: The institutions, eco-

nomics, and econometrics of securities trading, 2007.

[17] Gur Huberman and Werner Stanzl. Price manipulation and quasi-arbitrage.

Econometrica, 72(4):1247–1275, 2004.

[18] The MathWorks Inc. Global Optimization Toolbox User’s Guide, 2004-2015.

[19] The MathWorks Inc. Optimization Toolbox User’s Guide, 2004-2015.

[20] The MathWorks Inc. Parallel Computing Toolbox User’s Guide, 2004-2015.

[21] Hizuru Konishiy and Naoki Makimoto. Optimal slice of a block trade. Risk,

3(4), 2001.

[22] Fabrizio Lillo, J Doyne Farmer, and Rosario N Mantegna. Econophysics:

Master curve for price-impact function. Nature, 421(6919):129–130, 2003.

[23] Thomas F Loeb. Trading cost: the critical link between investment informa-

tion and results. Financial Analysts Journal, 39(3):39–44, 1983.

[24] Julian Lorenz and Robert Almgren. Mean–variance optimal adaptive execu-

tion. Applied Mathematical Finance, 18(5):395–422, 2011.

[25] Jonathan R Macey and Maureen O’hara. The law and economics of best

execution. Journal of Financial Intermediation, 6(3):188–223, 1997.



Bibliography 58

[26] Esteban Moro, Javier Vicente, Luis G Moyano, Austin Gerig, J Doyne Farmer,

Gabriella Vaglica, Fabrizio Lillo, and Rosario N Mantegna. Market impact

and trading profile of hidden orders in stock markets. Physical Review E,

80(6):066102, 2009.

[27] Jorge Nocedal and Stephen Wright. Numerical Optimization. Springer Science

& Business Media, 2006.

[28] Anna A Obizhaeva and Jiang Wang. Optimal trading strategy and supply/de-

mand dynamics. Journal of Financial Markets, 16(1):1–32, 2013.

[29] Andre F Perold. The implementation shortfall: Paper versus reality. The

Journal of Portfolio Management, 14(3):4–9, 1988.

[30] Silviu Predoiu, Gennady Shaikhet, and Steven Shreve. Optimal execution in a

general one-sided limit-order book. SIAM Journal on Financial Mathematics,

2(1):183–212, 2011.

[31] Alexander Schied and Torsten Schöneborn. Risk aversion and the dynamics
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